
Cloud Container Instance (CCI)

Best Practices

Issue 01

Date 2025-08-12

HUAWEI CLOUD COMPUTING TECHNOLOGIES CO., LTD.

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2025. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior
written consent of Huawei Cloud Computing Technologies Co., Ltd.

Trademarks and Permissions

 and other Huawei trademarks are the property of Huawei Technologies Co., Ltd.
All other trademarks and trade names mentioned in this document are the property of their respective
holders.

Notice
The purchased products, services and features are stipulated by the contract made between Huawei
Cloud and the customer. All or part of the products, services and features described in this document may
not be within the purchase scope or the usage scope. Unless otherwise specified in the contract, all
statements, information, and recommendations in this document are provided "AS IS" without
warranties, guarantees or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the
preparation of this document to ensure accuracy of the contents, but all statements, information, and
recommendations in this document do not constitute a warranty of any kind, express or implied.

Huawei Cloud Computing Technologies Co., Ltd.
Address: Huawei Cloud Data Center Jiaoxinggong Road

Qianzhong Avenue
Gui'an New District
Gui Zhou 550029
People's Republic of China

Website: https://www.huaweicloud.com/intl/en-us/

Issue 01 (2025-08-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. i

https://www.huaweicloud.com/intl/en-us/

Contents

1 Workload Creation.. 1
1.1 Deploying WordPress Using the CCI Console.. 1
1.2 Configuring Dockerfile Parameters for CCI.. 5

2 Workload Management... 7
2.1 Performing Graceful Rolling Upgrades for CCI Applications.. 7
2.2 Exposing Basic Pod Information to Containers Through Environment Variables...10
2.3 Configuring Kernel Parameters.. 12
2.4 Resizing /dev/shm...18
2.5 Configuring Transparent Huge Pages.. 19
2.6 Configuring Multiple Network Interfaces and EIPs for a Pod... 22

3 Storage Management...31
3.1 Adding Ephemeral Storage Capacity..31

4 Image Management... 33
4.1 Using Image Snapshots to Accelerate Image Pull...33
4.2 Using a Third-Party Image to Create a Pod.. 34

5 Log Monitoring.. 36
5.1 Reporting Logs to LTS..36

Cloud Container Instance (CCI)
Best Practices Contents

Issue 01 (2025-08-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. ii

1 Workload Creation

1.1 Deploying WordPress Using the CCI Console
Cloud Container Instance (CCI) provides a serverless container engine, eliminating
the need to manage clusters or servers. CCI delivers container agility and high
performance with only three steps. CCI enables you to create Deployments. It
enhances container security isolation and supports fast workload deployment,
elastic load balancing, and auto scaling based on the Kubernetes workload model.

Creating a Namespace

Step 1 Log in to the CCI 2.0 console.

Step 2 In the navigation pane, choose Namespaces.

Step 3 On the Namespaces page, click Create Namespace in the upper right corner.

Step 4 Enter a name for the namespace.

NO TE

● The name of each namespace must be unique.
● Enter 1 to 63 characters starting and ending with a lowercase letter or digit. Only

lowercase letters, digits, and hyphens (-) are allowed.

Step 5 (Optional) Specify monitoring settings.

Parameter Description

AOM (Optional) If this option is enabled, you need to select an AOM
instance.

Step 6 Configure the network plane.

Cloud Container Instance (CCI)
Best Practices 1 Workload Creation

Issue 01 (2025-08-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1

https://console.eu.huaweicloud.com/cci2.0

Table 1-1 Network plane settings

Parameter Description

IPv6 If this option is enabled, IPv4/IPv6 dual stack is supported.

VPC Select the VPC where the workloads are running. If no VPC
is available, create one first. The VPC cannot be changed
once selected.
Recommended CIDR blocks: 10.0.0.0/8-22, 172.16.0.0/12-22,
and 192.168.0.0/16-22
NOTICE

● You cannot set the VPC CIDR block and subnet CIDR block to
10.247.0.0/16, because this CIDR block is reserved for workloads.
If you select this CIDR block, there may be IP address conflicts,
which may result in workload creation failure or service
unavailability. If you do not need to access pods through
workloads, you can select this CIDR block.

● After the namespace is created, you can choose Namespaces in
the navigation pane and view the VPC and subnet in the Subnet
column.

Subnet Select the subnet where the workloads are running. If no
subnet is available, create one first. The subnet cannot be
changed once selected.
● A certain number of IP addresses (10 by default) in the

subnet will be warmed up for the namespace.
● You can set the number of IP addresses to be warmed up

in Advanced Settings.
● If warming up IP addresses for the namespace is enabled,

the VPC and subnet can only be deleted after the
namespace is deleted.

NOTE
Ensure that there are sufficient available IP addresses in the subnet.
If IP addresses are insufficient, workload creation will fail.

Security Group Select a security group. If no security group is available,
create one first. The security group cannot be changed once
selected.

Step 7 (Optional) Specify advanced settings.

Each namespace provides an IP pool. You can specify the pool size to reduce the
duration for assigning IP addresses and speed up the workload creation.

For example, 200 pods are running routinely, and 200 IP addresses are required in
the IP pool. During peak hours, the IP pool instantly scales out to provide 65,535
IP addresses. After a specified interval (for example, 23 hours), the IP addresses
that exceed the pool size (65535 – 200 = 65335) will be recycled.

Cloud Container Instance (CCI)
Best Practices 1 Workload Creation

Issue 01 (2025-08-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2

Table 1-2 (Optional) Advanced namespace settings

Parameter Description

IP Pool Warm-up
for Namespace

● An IP pool is provided for each namespace, with the
number of IP addresses you specify here. IP addresses
will be assigned in advance to accelerate workload
creation.

● An IP pool can contain a maximum of 65,535 IP
addresses.

● When using general-computing pods, you are advised
to configure an appropriate size for the IP pool based
on service requirements to accelerate workload
startup.

● Configure the number of IP addresses to be assigned
properly. If the number of IP addresses exceeds the
number of available IP addresses in the subnet, other
services will be affected.

IP Address
Recycling Interval
(h)

Pre-assigned IP addresses that become idle can be
recycled within the duration you specify here.
NOTE

Recycling mechanism:
● Recycling time: The yangtse.io/warm-pool-recycle-interval

field configured on the network determines when the IP
addresses can be recycled. If yangtse.io/warm-pool-recycle-
interval is set to 24, the IP addresses can only be recycled 24
hours later.

● Recycling rate: A maximum of 50 IP addresses can be recycled
at a time. This prevents IP addresses from being repeatedly
assigned or released due to fast or frequent recycling.

Step 8 Click OK.

You can view the VPC and subnet on the namespace details page.

----End

Creating a Deployment Using YAML
Step 1 Log in to the CCI console. In the navigation pane, choose Workloads. On the

Deployments tab, click Create from YAML.

Cloud Container Instance (CCI)
Best Practices 1 Workload Creation

Issue 01 (2025-08-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 3

Step 2 Specify basic information. The following is an example YAML file:
kind: Deployment
apiVersion: cci/v2
metadata:
 name: wordpress
spec:
 replicas: 1
 selector:
 matchLabels:
 app: wordpress
 template:
 metadata:
 labels:
 app: wordpress
 spec:
 containers:
 - name: wordpress
 image: wordpress:latest
 ports:
 - containerPort: 80
 resources:
 limits:
 cpu: 500m
 memory: 1Gi
 requests:
 cpu: 500m
 memory: 1Gi
 dnsPolicy: Default

Step 3 Create a Service of the LoadBalancer type. The load balancer associated with the
Service must have an EIP bound. For details, see Public Network Access. The
following is an example YAML file:
kind: Service
apiVersion: cci/v2
metadata:
 name: service-wordpress
 annotations:
 kubernetes.io/elb.class: elb
 kubernetes.io/elb.id: '${elb_id}'
spec:
 ports:
 - name: service-wordpress-port
 protocol: TCP
 port: 80
 targetPort: 80
 selector:
 app: wordpress
 type: LoadBalancer

Step 4 Use a browser to access the EIP in the access address.

Cloud Container Instance (CCI)
Best Practices 1 Workload Creation

Issue 01 (2025-08-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 4

https://support.huaweicloud.com/eu/usermanual-cci2/cci_01_0020.html

----End

1.2 Configuring Dockerfile Parameters for CCI

Scenario
A Dockerfile is often used to build an image. A Dockerfile is a text document that
contains all the commands a user could call on the command line to assemble an
image.

This topic describes how to apply the Dockerfile configurations in CCI.

Using Dockerfile Parameters in CCI
The following uses an example to describe the relationship between Dockerfile
parameters and CCI.

FROM ubuntu:16.04

ENV VERSION 1.0

VOLUME /var/lib/app

EXPOSE 80

ENTRYPOINT ["./entrypoint.sh"]
CMD ["start"]

In this example, the Dockerfile contains common parameters, including ENV,
VOLUME, EXPOSE, ENTRYPOINT, and CMD. These parameters can be configured
for CCI as follows:

kind: Deployment
apiVersion: cci/v2
metadata:

Cloud Container Instance (CCI)
Best Practices 1 Workload Creation

Issue 01 (2025-08-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 5

 name: wordpress
spec:
 replicas: 1
 selector:
 matchLabels:
 app: wordpress
 template:
 metadata:
 labels:
 app: wordpress
 spec:
 containers:
 - name: wordpress
 image: wordpress:latest
 command: [."/entrypoint.sh"] # ENTRYPOINT
 args: ["start"] # CMD
 ports: # EXPOSE
 - containerPort: 80
 env: # ENV
 - name: VERSION
 value: "1.0"
 resources:
 limits:
 cpu: 500m
 memory: 1Gi
 requests:
 cpu: 500m
 memory: 1Gi
 volumeMounts: # VOLUME
 - name: cache-volume
 mountPath: /cache
 volumes:
 - name: cache-volume
 emptyDir:
 sizeLimit: 1Gi
 medium: Memory
 dnsPolicy: Default

Cloud Container Instance (CCI)
Best Practices 1 Workload Creation

Issue 01 (2025-08-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 6

2 Workload Management

2.1 Performing Graceful Rolling Upgrades for CCI
Applications

Scenario
When you deploy a workload in CCI to run an application, the application is
exposed through a LoadBalancer Service, which has a dedicated load balancer
associated to allow traffic to the containers. When there is a rolling upgrade or
auto scaling, the pods may fail to work with the load balancer, and 5xx errors are
returned. This topic guides you to configure container probes and readiness time
for graceful rolling upgrades and auto scaling.

Table 2-1 Scenarios

Scenario Solution

Deployment upgrade Rolling upgrade + Liveness or readiness probe +
Graceful termination

Deployment scale-in Liveness or readiness probe + Graceful termination

● Rolling upgrade
Perform a rolling upgrade to update the pods for the Deployment. In this
mode, pods are updated one by one, not all at once. In this way, you can
control the update speed and the number of concurrent pods to ensure that
services are not interrupted during the upgrade. For example, you can
configure the maxSurge and maxUnavailable parameters to control the
number of new pods and the number of old pods concurrently. Ensure that
there is always a workload that can provide services during the upgrade.
Here is an example. Suppose that maxSurge and maxUnavailable are set to
25% and the number of replicas of a Deployment is 2. In the actual upgrade,
maxSurge allows a maximum of three pods (rounded up to 3 from 2 × 1.25 =
2.5), and maxUnavailable does not allow any unavailable pods (rounded

Cloud Container Instance (CCI)
Best Practices 2 Workload Management

Issue 01 (2025-08-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 7

down to 0 from 2 × 0.25 = 0.5). This means that two pods are running during
the upgrade. Each time a pod is created, an old pod will be deleted until all
pods are replaced by new ones.

● Liveness or readiness probe
A liveness probe can be used to determine when to restart a container. If the
liveness check of a container fails, CCI restarts the container to improve
application availability.
A readiness probe can know when the container is ready to receive traffic. If
the pod is not ready, it will be disassociated from the load balancer.

● Graceful termination
During workload upgrade or scale-in, the pod is disassociated from the load
balancer, but the connections of the requests that are still being handled will
be retained. If the backend service pods exit immediately after receiving the
end signal, the in-progress requests may fail or some traffic may be forwarded
to pods that have already exited, leading to traffic loss. To avoid this problem,
you are advised to configure the graceful termination time
(terminationGracePeriodSeconds) and PreStop hook for the pod.
The default value of terminationGracePeriodSeconds is 30 seconds. When a
pod is deleted, the SIGTERM signal is sent, and the system waits for the
application in the container to terminate. If the application is not terminated
within the period specified by terminationGracePeriodSeconds, an SIGKILL
signal is sent to forcibly terminate the application.
If the SIGTERM signal is not handled in the service code, you can configure a
PreStop hook for the pod to continue working for a period of time after the
pod is removed to avoid traffic loss.
The SIGTERM signal should be handled in the service code for graceful
termination. You can also use a PreStop to make the pod to sleep for a while
and stop the processes in the container until kube-proxy completes rule
synchronization. Because the sum of the time required by the PreStop hook
and the time when the processes are stopped may exceed 30s, you can specify
terminationGracePeriodSeconds as needed to prevent the pod from being
forcibly stopped by the SIGKILL signal too early.

Procedure
An Nginx Deployment is used as an example to describe how to perform a
graceful rolling upgrade or auto scaling in CCI.

Step 1 Log in to the CCI console. In the navigation pane, choose Workloads. On the
Deployments tab, click Create from YAML.

Cloud Container Instance (CCI)
Best Practices 2 Workload Management

Issue 01 (2025-08-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 8

Step 2 Create a Deployment. The following is an example YAML file:
kind: Deployment
apiVersion: cci/v2
metadata:
 name: nginx
spec:
 replicas: 1
 selector:
 matchLabels:
 app: nginx
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - name: nginx
 image: nginx:latest
 ports:
 - containerPort: 80
 resources:
 limits:
 cpu: 500m
 memory: 1Gi
 requests:
 cpu: 500m
 memory: 1Gi
 livenessProbe: # Liveness probe
 httpGet: # An HTTP request is used to check the containers.
 path: / # The HTTP health check path is /.
 port: 80 # The health check port is 80.
 initailDelySeconds: 5
 periodSeconds: 5
 readinessProbe: # Readiness probe. This is used to check whether the container is ready. If the
container is not ready, traffic is not forwarded to it.
 httpGet:
 path: /
 port: 80
 initialDelaySeconds: 5
 periodSeconds: 5
 lifecycle:
 preStop: # PreStop hook. This configuration ensures that the container can provide
services for external systems during the exit.
 exec:
 command:
 - /bin/bash
 - '-c'
 - sleep 30
 dnsPolicy: Default
 imagePullSecrets:
 - name: imagepull-secret
 strategy:
 type: RollingUpdate
 rollingUpdate:
 maxUnavailable: 0 # Maximum number of unavailable pods that can be tolerated during the
rolling upgrade
 maxSurge: 100% # Percentage of redundant pods during the rolling upgrade
 minReadySeconds: 10 # Minimum readiness time. A pod is considered available only when the
minimum readiness time is exceeded without any of its containers crashing.

NO TE

● The recommended value of minReadySeconds is the sum of the expected time for
starting the container and the duration from the time when the pod is associated with
the load balancer to the time when the pod receives the traffic.

● The value of minReadySeconds must be smaller than that of sleep to ensure that the
new container is ready before the old container stops and exits.

Cloud Container Instance (CCI)
Best Practices 2 Workload Management

Issue 01 (2025-08-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 9

Step 3 Test the upgrade and auto scaling.

Prepare a client outside the cluster and configure the script detection_script.sh
with the following content (100.85.125.90:80 indicates the public network address
for accessing the Service):
#! /bin/bash
for ((; ;))
do
 curl -I 100.85.125.90:80 | grep "200 OK"
 if [$? -ne 0]; then
 echo "response error!"
 exit 1
 fi
done

Step 4 Run the script bash detection_script.sh. Log in to the CCI console. In the
navigation pane, choose Workloads. On the Deployments tab, select the target
workload and click Edit YAML to trigger a rolling upgrade.

If the access to the application is not interrupted and the returned responses are
all 200 OK, a graceful upgrade is performed.

----End

2.2 Exposing Basic Pod Information to Containers
Through Environment Variables

If you want a pod to expose its basic information to the container running in the
pod, you can use the Kubernetes Downward API to inject environment variables.
This topic describes how to add environment variables to the definition of a
Deployment or a pod to obtain the namespace, name, UID, IP address, region, and
AZ of the pod.

When CCI creates a pod and allocates it to a node, the region and AZ information
of the node is added to the pod's annotations.

Cloud Container Instance (CCI)
Best Practices 2 Workload Management

Issue 01 (2025-08-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 10

https://kubernetes.io/docs/tasks/inject-data-application/environment-variable-expose-pod-information/

In this case, the format of the pod's annotations is as follows:

apiVersion: cci/v2
 kind: Pod
 metadata:
 annotations:
 topology.kubernetes.io/region: "{{region}}" # Region of the node
 topology.kubernetes.io/zone: "{{available-zone}}" #AZ of the node

Deployment Configuration Example

The following example shows how to use environment variables to obtain basic
pod information.

kind: Deployment
apiVersion: cci/v2
metadata:
 name: cci-downwardapi-test
 namespace: cci-test # Enter a specific namespace.
spec:
 replicas: 2
 selector:
 matchLabels:
 app: cci-downwardapi-test
 template:
 metadata:
 labels:
 app: cci-downwardapi-test
 spec:
 containers:
 - name: container-0
 image: 'library/euleros:latest'
 command:
 - /bin/bash
 - '-c'
 - while true; do echo hello; sleep 10; done
 env:
 - name: MY_POD_UID
 valueFrom:
 fieldRef:
 fieldPath: metadata.uid
 - name: MY_POD_NAME
 valueFrom:
 fieldRef:
 fieldPath: metadata.name
 - name: MY_POD_NAMESPACE
 valueFrom:
 fieldRef:
 fieldPath: metadata.namespace
 - name: MY_POD_IP
 valueFrom:
 fieldRef:
 fieldPath: status.podIP
 - name: REGION
 valueFrom:
 fieldRef:
 fieldPath: metadata.annotations['topology.kubernetes.io/region']
 - name: ZONE
 valueFrom:
 fieldRef:
 fieldPath: metadata.annotations['topology.kubernetes.io/zone']
 resources:
 limits:
 cpu: 500m
 memory: 1Gi
 requests:
 cpu: 500m
 memory: 1Gi

Cloud Container Instance (CCI)
Best Practices 2 Workload Management

Issue 01 (2025-08-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 11

When the Deployment starts, you can view the pod information exposed to the
container through environment variables.

Figure 2-1 Basic pod Information

2.3 Configuring Kernel Parameters
CCI provides an industry-leading serverless container platform. Kernel parameter
optimization is a common practice in advanced service deployment scenarios. In a
safe situation, CCI allows you to configure kernel parameters through a security
context of a pod based on the solution recommended by the Kubernetes
community, greatly improving the flexibility of service deployment. For more
information, see Security Context.

In Linux, kernel parameters are usually configured through the sysctl interface. In
Kubernetes, kernel parameters are configured through the sysctl security context
of the pod. For more information of sysctl, see Using sysctls in a Kubernetes
Cluster. The security context is applied to all containers in the pod.

CCI allows you to modify the following kernel parameters:

 "kernel.shm_rmid_forced",
 "kernel.shmall",
 "kernel.shmmax",
 "kernel.shmmni",
 "kernel.msgmax",
 "kernel.msgmnb",
 "kernel.msgmni",
 "kernel.sem",
 "fs.mqueue.msg_default",
 "fs.mqueue.msg_max",
 "fs.mqueue.msgsize_default",

Cloud Container Instance (CCI)
Best Practices 2 Workload Management

Issue 01 (2025-08-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 12

https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://kubernetes.io/docs/tasks/administer-cluster/sysctl-cluster/
https://kubernetes.io/docs/tasks/administer-cluster/sysctl-cluster/

 "fs.mqueue.msgsize_max",
 "fs.mqueue.queues_max",
 "net.core.busy_poll",
 "net.core.busy_read",
 "net.core.default_qdisc",
 "net.core.dev_weight",
 "net.core.dev_weight_rx_bias",
 "net.core.dev_weight_tx_bias",
 "net.core.fb_tunnels_only_for_init_net",
 "net.core.flow_limit_cpu_bitmap",
 "net.core.flow_limit_table_len",
 "net.core.max_skb_frags",
 "net.core.message_burst",
 "net.core.message_cost",
 "net.core.netdev_budget",
 "net.core.netdev_budget_usecs",
 "net.core.netdev_max_backlog",
 "net.core.netdev_rss_key",
 "net.core.netdev_tstamp_prequeue",
 "net.core.optmem_max",
 "net.core.rmem_default",
 "net.core.rmem_max",
 "net.core.rps_sock_flow_entries",
 "net.core.somaxconn",
 "net.core.tstamp_allow_data",
 "net.core.warnings",
 "net.core.wmem_default",
 "net.core.wmem_max",
 "net.core.xfrm_acq_expires",
 "net.core.xfrm_aevent_etime",
 "net.core.xfrm_aevent_rseqth",
 "net.core.xfrm_larval_drop",
 "net.ipv4.conf.all.accept_local",
 "net.ipv4.conf.all.accept_redirects",
 "net.ipv4.conf.all.accept_source_route",
 "net.ipv4.conf.all.arp_accept",
 "net.ipv4.conf.all.arp_announce",
 "net.ipv4.conf.all.arp_filter",
 "net.ipv4.conf.all.arp_ignore",
 "net.ipv4.conf.all.arp_notify",
 "net.ipv4.conf.all.bc_forwarding",
 "net.ipv4.conf.all.bootp_relay",
 "net.ipv4.conf.all.disable_policy",
 "net.ipv4.conf.all.disable_xfrm",
 "net.ipv4.conf.all.drop_gratuitous_arp",
 "net.ipv4.conf.all.drop_unicast_in_l2_multicast",
 "net.ipv4.conf.all.force_igmp_version",
 "net.ipv4.conf.all.forwarding",
 "net.ipv4.conf.all.igmpv2_unsolicited_report_interval",
 "net.ipv4.conf.all.igmpv3_unsolicited_report_interval",
 "net.ipv4.conf.all.ignore_routes_with_linkdown",
 "net.ipv4.conf.all.log_martians",
 "net.ipv4.conf.all.mc_forwarding",
 "net.ipv4.conf.all.medium_id",
 "net.ipv4.conf.all.promote_secondaries",
 "net.ipv4.conf.all.proxy_arp",
 "net.ipv4.conf.all.proxy_arp_pvlan",
 "net.ipv4.conf.all.route_localnet",
 "net.ipv4.conf.all.rp_filter",
 "net.ipv4.conf.all.secure_redirects",
 "net.ipv4.conf.all.send_redirects",
 "net.ipv4.conf.all.shared_media",
 "net.ipv4.conf.all.src_valid_mark",
 "net.ipv4.conf.all.tag",
 "net.ipv4.conf.default.accept_local",
 "net.ipv4.conf.default.accept_redirects",
 "net.ipv4.conf.default.accept_source_route",
 "net.ipv4.conf.default.arp_accept",
 "net.ipv4.conf.default.arp_announce",

Cloud Container Instance (CCI)
Best Practices 2 Workload Management

Issue 01 (2025-08-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 13

 "net.ipv4.conf.default.arp_filter",
 "net.ipv4.conf.default.arp_ignore",
 "net.ipv4.conf.default.arp_notify",
 "net.ipv4.conf.default.bc_forwarding",
 "net.ipv4.conf.default.bootp_relay",
 "net.ipv4.conf.default.disable_policy",
 "net.ipv4.conf.default.disable_xfrm",
 "net.ipv4.conf.default.drop_gratuitous_arp",
 "net.ipv4.conf.default.drop_unicast_in_l2_multicast",
 "net.ipv4.conf.default.force_igmp_version",
 "net.ipv4.conf.default.forwarding",
 "net.ipv4.conf.default.igmpv2_unsolicited_report_interval",
 "net.ipv4.conf.default.igmpv3_unsolicited_report_interval",
 "net.ipv4.conf.default.ignore_routes_with_linkdown",
 "net.ipv4.conf.default.log_martians",
 "net.ipv4.conf.default.mc_forwarding",
 "net.ipv4.conf.default.medium_id",
 "net.ipv4.conf.default.promote_secondaries",
 "net.ipv4.conf.default.proxy_arp",
 "net.ipv4.conf.default.proxy_arp_pvlan",
 "net.ipv4.conf.default.route_localnet",
 "net.ipv4.conf.default.rp_filter",
 "net.ipv4.conf.default.secure_redirects",
 "net.ipv4.conf.default.send_redirects",
 "net.ipv4.conf.default.shared_media",
 "net.ipv4.conf.default.src_valid_mark",
 "net.ipv4.conf.default.tag",
 "net.ipv4.conf.eth0.accept_local",
 "net.ipv4.conf.eth0.accept_redirects",
 "net.ipv4.conf.eth0.accept_source_route",
 "net.ipv4.conf.eth0.arp_accept",
 "net.ipv4.conf.eth0.arp_announce",
 "net.ipv4.conf.eth0.arp_filter",
 "net.ipv4.conf.eth0.arp_ignore",
 "net.ipv4.conf.eth0.arp_notify",
 "net.ipv4.conf.eth0.bc_forwarding",
 "net.ipv4.conf.eth0.bootp_relay",
 "net.ipv4.conf.eth0.disable_policy",
 "net.ipv4.conf.eth0.disable_xfrm",
 "net.ipv4.conf.eth0.drop_gratuitous_arp",
 "net.ipv4.conf.eth0.drop_unicast_in_l2_multicast",
 "net.ipv4.conf.eth0.force_igmp_version",
 "net.ipv4.conf.eth0.forwarding",
 "net.ipv4.conf.eth0.igmpv2_unsolicited_report_interval",
 "net.ipv4.conf.eth0.igmpv3_unsolicited_report_interval",
 "net.ipv4.conf.eth0.ignore_routes_with_linkdown",
 "net.ipv4.conf.eth0.log_martians",
 "net.ipv4.conf.eth0.mc_forwarding",
 "net.ipv4.conf.eth0.medium_id",
 "net.ipv4.conf.eth0.promote_secondaries",
 "net.ipv4.conf.eth0.proxy_arp",
 "net.ipv4.conf.eth0.proxy_arp_pvlan",
 "net.ipv4.conf.eth0.route_localnet",
 "net.ipv4.conf.eth0.rp_filter",
 "net.ipv4.conf.eth0.secure_redirects",
 "net.ipv4.conf.eth0.send_redirects",
 "net.ipv4.conf.eth0.shared_media",
 "net.ipv4.conf.eth0.src_valid_mark",
 "net.ipv4.conf.eth0.tag",
 "net.ipv4.conf.lo.accept_local",
 "net.ipv4.conf.lo.accept_redirects",
 "net.ipv4.conf.lo.accept_source_route",
 "net.ipv4.conf.lo.arp_accept",
 "net.ipv4.conf.lo.arp_announce",
 "net.ipv4.conf.lo.arp_filter",
 "net.ipv4.conf.lo.arp_ignore",
 "net.ipv4.conf.lo.arp_notify",
 "net.ipv4.conf.lo.bc_forwarding",
 "net.ipv4.conf.lo.bootp_relay",

Cloud Container Instance (CCI)
Best Practices 2 Workload Management

Issue 01 (2025-08-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 14

 "net.ipv4.conf.lo.disable_policy",
 "net.ipv4.conf.lo.disable_xfrm",
 "net.ipv4.conf.lo.drop_gratuitous_arp",
 "net.ipv4.conf.lo.drop_unicast_in_l2_multicast",
 "net.ipv4.conf.lo.force_igmp_version",
 "net.ipv4.conf.lo.forwarding",
 "net.ipv4.conf.lo.igmpv2_unsolicited_report_interval",
 "net.ipv4.conf.lo.igmpv3_unsolicited_report_interval",
 "net.ipv4.conf.lo.ignore_routes_with_linkdown",
 "net.ipv4.conf.lo.log_martians",
 "net.ipv4.conf.lo.mc_forwarding",
 "net.ipv4.conf.lo.medium_id",
 "net.ipv4.conf.lo.promote_secondaries",
 "net.ipv4.conf.lo.proxy_arp",
 "net.ipv4.conf.lo.proxy_arp_pvlan",
 "net.ipv4.conf.lo.route_localnet",
 "net.ipv4.conf.lo.rp_filter",
 "net.ipv4.conf.lo.secure_redirects",
 "net.ipv4.conf.lo.send_redirects",
 "net.ipv4.conf.lo.shared_media",
 "net.ipv4.conf.lo.src_valid_mark",
 "net.ipv4.conf.lo.tag",
 "net.ipv4.fwmark_reflect",
 "net.ipv4.icmp_echo_ignore_all",
 "net.ipv4.icmp_echo_ignore_broadcasts",
 "net.ipv4.icmp_errors_use_inbound_ifaddr",
 "net.ipv4.icmp_ignore_bogus_error_responses",
 "net.ipv4.icmp_msgs_burst",
 "net.ipv4.icmp_msgs_per_sec",
 "net.ipv4.icmp_ratelimit",
 "net.ipv4.icmp_ratemask",
 "net.ipv4.igmp_link_local_mcast_reports",
 "net.ipv4.igmp_max_memberships",
 "net.ipv4.igmp_max_msf",
 "net.ipv4.igmp_qrv",
 "net.ipv4.inet_peer_maxttl",
 "net.ipv4.inet_peer_minttl",
 "net.ipv4.inet_peer_threshold",
 "net.ipv4.ip_default_ttl",
 "net.ipv4.ip_dynaddr",
 "net.ipv4.ip_early_demux",
 "net.ipv4.ip_forward",
 "net.ipv4.ip_forward_update_priority",
 "net.ipv4.ip_forward_use_pmtu",
 "net.ipv4.ip_local_port_range",
 "net.ipv4.ip_local_reserved_ports",
 "net.ipv4.ip_no_pmtu_disc",
 "net.ipv4.ip_nonlocal_bind",
 "net.ipv4.ip_unprivileged_port_start",
 "net.ipv4.ipfrag_high_thresh",
 "net.ipv4.ipfrag_low_thresh",
 "net.ipv4.ipfrag_max_dist",
 "net.ipv4.ipfrag_secret_interval",
 "net.ipv4.ipfrag_time",
 "net.ipv4.neigh.default.anycast_delay",
 "net.ipv4.neigh.default.app_solicit",
 "net.ipv4.neigh.default.base_reachable_time",
 "net.ipv4.neigh.default.base_reachable_time_ms",
 "net.ipv4.neigh.default.delay_first_probe_time",
 "net.ipv4.neigh.default.gc_interval",
 "net.ipv4.neigh.default.gc_stale_time",
 "net.ipv4.neigh.default.gc_thresh1",
 "net.ipv4.neigh.default.gc_thresh2",
 "net.ipv4.neigh.default.gc_thresh3",
 "net.ipv4.neigh.default.locktime",
 "net.ipv4.neigh.default.mcast_resolicit",
 "net.ipv4.neigh.default.mcast_solicit",
 "net.ipv4.neigh.default.proxy_delay",
 "net.ipv4.neigh.default.proxy_qlen",

Cloud Container Instance (CCI)
Best Practices 2 Workload Management

Issue 01 (2025-08-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 15

 "net.ipv4.neigh.default.retrans_time",
 "net.ipv4.neigh.default.retrans_time_ms",
 "net.ipv4.neigh.default.ucast_solicit",
 "net.ipv4.neigh.default.unres_qlen",
 "net.ipv4.neigh.default.unres_qlen_bytes",
 "net.ipv4.neigh.eth0.anycast_delay",
 "net.ipv4.neigh.eth0.app_solicit",
 "net.ipv4.neigh.eth0.base_reachable_time",
 "net.ipv4.neigh.eth0.base_reachable_time_ms",
 "net.ipv4.neigh.eth0.delay_first_probe_time",
 "net.ipv4.neigh.eth0.gc_stale_time",
 "net.ipv4.neigh.eth0.locktime",
 "net.ipv4.neigh.eth0.mcast_resolicit",
 "net.ipv4.neigh.eth0.mcast_solicit",
 "net.ipv4.neigh.eth0.proxy_delay",
 "net.ipv4.neigh.eth0.proxy_qlen",
 "net.ipv4.neigh.eth0.retrans_time",
 "net.ipv4.neigh.eth0.retrans_time_ms",
 "net.ipv4.neigh.eth0.ucast_solicit",
 "net.ipv4.neigh.eth0.unres_qlen",
 "net.ipv4.neigh.eth0.unres_qlen_bytes",
 "net.ipv4.neigh.lo.anycast_delay",
 "net.ipv4.neigh.lo.app_solicit",
 "net.ipv4.neigh.lo.base_reachable_time",
 "net.ipv4.neigh.lo.base_reachable_time_ms",
 "net.ipv4.neigh.lo.delay_first_probe_time",
 "net.ipv4.neigh.lo.gc_stale_time",
 "net.ipv4.neigh.lo.locktime",
 "net.ipv4.neigh.lo.mcast_resolicit",
 "net.ipv4.neigh.lo.mcast_solicit",
 "net.ipv4.neigh.lo.proxy_delay",
 "net.ipv4.neigh.lo.proxy_qlen",
 "net.ipv4.neigh.lo.retrans_time",
 "net.ipv4.neigh.lo.retrans_time_ms",
 "net.ipv4.neigh.lo.ucast_solicit",
 "net.ipv4.neigh.lo.unres_qlen",
 "net.ipv4.neigh.lo.unres_qlen_bytes",
 "net.ipv4.ping_group_range",
 "net.ipv4.route.error_burst",
 "net.ipv4.route.error_cost",
 "net.ipv4.route.gc_elasticity",
 "net.ipv4.route.gc_interval",
 "net.ipv4.route.gc_min_interval",
 "net.ipv4.route.gc_min_interval_ms",
 "net.ipv4.route.gc_thresh",
 "net.ipv4.route.gc_timeout",
 "net.ipv4.route.max_size",
 "net.ipv4.route.min_adv_mss",
 "net.ipv4.route.min_pmtu",
 "net.ipv4.route.mtu_expires",
 "net.ipv4.route.redirect_load",
 "net.ipv4.route.redirect_number",
 "net.ipv4.route.redirect_silence",
 "net.ipv4.tcp_abort_on_overflow",
 "net.ipv4.tcp_adv_win_scale",
 "net.ipv4.tcp_allowed_congestion_control",
 "net.ipv4.tcp_app_win",
 "net.ipv4.tcp_autocorking",
 "net.ipv4.tcp_available_congestion_control",
 "net.ipv4.tcp_available_ulp",
 "net.ipv4.tcp_base_mss",
 "net.ipv4.tcp_challenge_ack_limit",
 "net.ipv4.tcp_comp_sack_delay_ns",
 "net.ipv4.tcp_comp_sack_nr",
 "net.ipv4.tcp_congestion_control",
 "net.ipv4.tcp_dsack",
 "net.ipv4.tcp_early_demux",
 "net.ipv4.tcp_early_retrans",
 "net.ipv4.tcp_ecn",

Cloud Container Instance (CCI)
Best Practices 2 Workload Management

Issue 01 (2025-08-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 16

 "net.ipv4.tcp_ecn_fallback",
 "net.ipv4.tcp_fack",
 "net.ipv4.tcp_fastopen",
 "net.ipv4.tcp_fastopen_blackhole_timeout_sec",
 "net.ipv4.tcp_fastopen_key",
 "net.ipv4.tcp_fin_timeout",
 "net.ipv4.tcp_frto",
 "net.ipv4.tcp_fwmark_accept",
 "net.ipv4.tcp_invalid_ratelimit",
 "net.ipv4.tcp_keepalive_intvl",
 "net.ipv4.tcp_keepalive_probes",
 "net.ipv4.tcp_keepalive_time",
 "net.ipv4.tcp_limit_output_bytes",
 "net.ipv4.tcp_low_latency",
 "net.ipv4.tcp_max_orphans",
 "net.ipv4.tcp_max_reordering",
 "net.ipv4.tcp_max_syn_backlog",
 "net.ipv4.tcp_max_tw_buckets",
 "net.ipv4.tcp_mem",
 "net.ipv4.tcp_min_rtt_wlen",
 "net.ipv4.tcp_min_snd_mss",
 "net.ipv4.tcp_min_tso_segs",
 "net.ipv4.tcp_moderate_rcvbuf",
 "net.ipv4.tcp_mtu_probing",
 "net.ipv4.tcp_no_metrics_save",
 "net.ipv4.tcp_notsent_lowat",
 "net.ipv4.tcp_orphan_retries",
 "net.ipv4.tcp_pacing_ca_ratio",
 "net.ipv4.tcp_pacing_ss_ratio",
 "net.ipv4.tcp_probe_interval",
 "net.ipv4.tcp_probe_threshold",
 "net.ipv4.tcp_recovery",
 "net.ipv4.tcp_reordering",
 "net.ipv4.tcp_retrans_collapse",
 "net.ipv4.tcp_retries1",
 "net.ipv4.tcp_retries2",
 "net.ipv4.tcp_rfc1337",
 "net.ipv4.tcp_rmem",
 "net.ipv4.tcp_sack",
 "net.ipv4.tcp_slow_start_after_idle",
 "net.ipv4.tcp_stdurg",
 "net.ipv4.tcp_syn_retries",
 "net.ipv4.tcp_synack_retries",
 "net.ipv4.tcp_syncookies",
 "net.ipv4.tcp_thin_linear_timeouts",
 "net.ipv4.tcp_timestamps",
 "net.ipv4.tcp_tso_win_divisor",
 "net.ipv4.tcp_tw_reuse",
 "net.ipv4.tcp_window_scaling",
 "net.ipv4.tcp_wmem",
 "net.ipv4.tcp_workaround_signed_windows",
 "net.ipv4.udp_early_demux",
 "net.ipv4.udp_mem",
 "net.ipv4.udp_rmem_min",
 "net.ipv4.udp_wmem_min",
 "net.ipv4.xfrm4_gc_thresh",
 "net.nf_conntrack_max",
 "net.unix.max_dgram_qlen"

In the following example, the pod's securityContext is used to set the sysctl
parameters net.core.somaxconn and net.ipv4.tcp_tw_reuse.
apiVersion: cci/v2
kind:Pod
metadata:
 name: xxxxx
 namespace: auto-test-namespace
spec:
 securityContext:
 sysctls:

Cloud Container Instance (CCI)
Best Practices 2 Workload Management

Issue 01 (2025-08-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 17

 - name: net.core.somaxconn
 value: "65536"
 - name: net.ipv4.tcp_tw_reuse
 value: "1"
 ...
...

Go to the container to check whether the configuration takes effect.

2.4 Resizing /dev/shm

Scenario

/dev/shm consists of a temporary file system (tmpfs). tmpfs is a memory-based
file system implemented in Linux/Unix and has high read/write efficiency.

In CCI, the default size of /dev/shm is 64 MB, which cannot meet customer
requirements. You can change its size for data exchange between processes or
temporary data storage.

This topic shows how to resize /dev/shm by setting memory-backed emptyDir or
configuring securityContext and mount commands.

Constraints
● /dev/shm uses a memory-based tmpfs to temporarily store data. Data is not

retained after the container is restarted.
● You can use either of the following methods to change the size of /dev/shm.

However, do not use both methods in one pod.
● The emptyDir uses the memory requested by the pod and does not occupy

extra resources.
● Writing data in /dev/shm is equivalent to requesting memory. In this scenario,

you need to evaluate the memory usage of processes. When the sum of the
memory requested by processes in the container and the data volume in the
emptyDir exceeds the memory limit of the container, memory overflow
occurs.

● When resizing /dev/shm, set the size to 50% of the pod's memory request.

Resizing /dev/shm Using Memory-backed emptyDir

emptyDir is applicable to temporary data storage, disaster recovery, and runtime
data sharing. It will be deleted upon deletion or transfer of workload pods.

CCI allows you to mount memory-backed emptyDir. You can specify the memory
size allocated to the emptyDir and mount it to the /dev/shm directory in the
container to resize /dev/shm.

Cloud Container Instance (CCI)
Best Practices 2 Workload Management

Issue 01 (2025-08-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 18

apiVersion: cci/v2
kind: Pod
metadata:
 name: pod-emptydir-name
spec:
 containers:
 - image: 'library/ubuntu:latest'
 volumeMounts:
 - name: volume-emptydir1
 mountPath: /dev/shm
 name: container-0
 resources:
 limits:
 cpu: '4'
 memory: 8Gi
 requests:
 cpu: '4'
 memory: 8Gi
 volumes:
 - emptyDir:
 medium: Memory
 sizeLimit: 4Gi
 name: volume-emptydir1

After the pod is started, run the df -h command to go to the /dev/shm directory.
If the following information is displayed, the size is successfully modified.

Figure 2-2 /dev/shm directory details

2.5 Configuring Transparent Huge Pages

Scenario
Transparent Huge Pages (THP) is a memory management feature in the Linux
kernel. It is designed to compact multiple small pages (usually 4 KB) into huge
pages (usually 2 MB). THP dynamically adjusts the page size to optimize memory
management and reduces the number of page table lookups and Translation
Lookaside Buffer (TLB) misses to reduce memory access latency. However, if there
is memory fragmentation or high overhead of background processes, THP may
increase memory usage.

Advantages of THP
● Reduced TLB misses

THP compacts multiple small pages (usually 4 KB) into huge pages (usually 2
MB), significantly reducing TLB misses. TLB misses cause the processor to
access the page table for address translation, increasing the memory access

Cloud Container Instance (CCI)
Best Practices 2 Workload Management

Issue 01 (2025-08-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 19

latency. For memory-intensive applications, THP reduces the memory access
latency and significantly improves application performance.

● Reduced resource consumption for memory management by kernel

When the size of a memory page increases, the number of pages to be
maintained in the same physical memory is greatly reduced. This reduces the
resource consumption for the kernel to manage memory and the time of
page table queries. The page table query time is proportional to the page
table hierarchy and the number of pages. The decrease in the number of
pages improves the query efficiency and the overall system performance.

Disadvantages of THP
● Higher memory usage

In an environment where memory is frequently allocated and released, THP
may cause memory fragmentation, which increases the memory usage. When
there are a large number of small pages that cannot be compacted into huge
pages, THP may not work effectively. As a result, memory allocation fails or
performance deteriorates. Memory fragmentation is more obvious in
memory-intensive workloads.

● Potential OOM error

The resource allocation of THP may cause the actual memory usage to be
inconsistent with the application requirements. For example, an application
requires only 8 KB of memory (two small pages), but the kernel may allocate
2 MB of memory (a transparent huge page). When the system memory is
insufficient, the extra memory usage may trigger an out of memory (OOM)
error, affecting system stability.

THP Configuration Suggestions
● When an application frequently requests and releases small memory blocks

(for example, 4-KB pages), THP may frequently attempt to merge and split
pages. This dynamic management process requires additional compute
resources, which may significantly increase the memory management
overhead. In addition, frequent merging and splitting operations may cause
memory fragmentation, further reducing memory utilization. For this reason,
you are advised not to enable THP in this scenario to avoid performance
deterioration.

● If the application does not have high performance requirements and the
system memory is insufficient, you can disable THP to reduce memory usage.
The resource allocation of THP may cause the actual memory usage to be
inconsistent with the application requirements, and the resident set size (RSS)
increases. After THP is disabled, the system uses small 4-KB pages for
management. Although the number of TLB misses may increase, there is less
memory fragmentation, and the memory usage can be reduced. This avoids
the OOM error caused by insufficient memory.

Constraints
● CCI allows you to configure THP policies by using annotations when creating

a workload. If you modify the THP policy by editing the YAML file for the
Deployment, the pods will be recreated.

Cloud Container Instance (CCI)
Best Practices 2 Workload Management

Issue 01 (2025-08-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 20

● If THP policies are enabled:
– The default value of transparent_hugepage/defrag is madvise. The

memory is only reclaimed from the area specified by madvise
(MADV_HUGEPAGE).

– The default value of transparent_hugepage/khugepaged/defrag is 1,
indicating that khugepaged for memory defragmentation is enabled by
default.

Procedure
1. Log in to the CCI 2.0 console.
2. In the navigation pane, choose Workloads. On the Deployments tab, click

Create from YAML.

3. Define the Deployment. The following is an example YAML file:
kind: Deployment
apiVersion: cci/v2
metadata:
 name: deploy-example
 namespace: test-namespace
spec:
 replicas: 1
 selector:
 matchLabels:
 app: deploy-example
 template:
 metadata:
 labels:
 app: deploy-example
 annotations:
 system.cci.io/transparent_hugepage.enabled: never
 spec:
 containers:
 - name: deploy-example
 image: nginx
 resources:
 limits:
 cpu: 500m
 memory: 1Gi
 requests:
 cpu: 500m
 memory: 1Gi
 dnsPolicy: Default
 imagePullSecrets:
 - name: imagepull-secret
 strategy:
 type: RollingUpdate
 rollingUpdate:
 maxUnavailable: 0
 maxSurge: 100%

Cloud Container Instance (CCI)
Best Practices 2 Workload Management

Issue 01 (2025-08-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 21

https://console.eu.huaweicloud.com/cci2.0

Table 2-2 Description of key fields

Field Ty
pe

Description

system.cci.io/
transparent_hugepage.
enabled

Str
in
g

● always (default): enables THP globally.
● madvise: enables THP globally only in

the area specified by madvise
(MADV_HUGEPAGE).

● never: disables THP globally.

4. Click OK.

2.6 Configuring Multiple Network Interfaces and EIPs
for a Pod

Scenario

When a pod needs multiple network interfaces to manage network traffic, you can
configure them for the pod on CCI. This feature allows you to create multiple
networks in the same namespace and configure the network and EIP used by each
network interface in a pod annotation.

Feature Description
● When multiple networks are created, you must specify a network in the

namespace as the default network (by setting spec.defaultNetwork to true).
If there is only one network in the namespace, the network is identified as the
default network.

● If there are multiple networks in a namespace, the default network cannot be
changed to a non-default network.

● If there are multiple networks in a namespace, you can delete the default
network configuration. However, you need to reconfigure a new default
network after the deletion. Otherwise, the network function is abnormal.

● When multiple networks are created, the subnets of the networks cannot
overlap, and the subnets configured for all networks must be in the same
VPC.

● Deployments cannot have multiple network interfaces and EIPs. Only pods
can have multiple network interfaces and EIPs.

● You can configure multiple network interfaces and EIPs for pods through the
yangtse.io/multi-eip-ids or k8s.v1.cni.cncf.io/networks annotation. The two
annotations cannot be configured at the same time.

● Only general-computing-lite pods can have multiple network interfaces and
EIPs.

● A pod can have a maximum of five network interfaces.
● If a pod is configured with multiple network interfaces, only the IP address of

the primary network interface is displayed. (The IP address displayed in

Cloud Container Instance (CCI)
Best Practices 2 Workload Management

Issue 01 (2025-08-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 22

status.podIP and status.podIPs is the IP address of the first network
interface.)

Constraints
● Pods with multiple network interfaces may take a little longer to start. Plan

and use the network interfaces appropriately.
● If there are multiple network interfaces and EIPs, only IPv4 addresses are

supported.
● If a pod is configured with multiple network interfaces and EIPs, the primary

network interface is used by default. You need to synchronize the special
configurations (such as EIP access to the public network and security group
network segment bypass) of other network interfaces to the primary network
interface. If the special configurations are not synchronized, there may be
problems such as image pull failure and volume mounting failure.

● If a pod is configured with multiple network interfaces and EIPs, the cci.io/
image-snapshot-create-if-not-present annotation cannot be used for
automatic image snapshot creation.

● If a pod is configured with multiple network interfaces and EIPs, the
annotations for configuring a single EIP (including yangtse.io/eip-
bandwidth-id, yangtse.io/eip-bandwidth-size, yangtse.io/eip-network-
type, yangtse.io/eip-charge-mode, yangtse.io/eip-bandwidth-name,
yangtse.io/pod-with-eip and yangtse.io/eip-id) are not supported.

● If IP addresses in the subnet in the primary network are used up, a non-
primary network will not be selected.

Procedure
1. Call the CCI API to set the default network and create multiple networks.

apiVersion: yangtse/v2
kind: Network
metadata:
 name: test-network
 namespace: test
spec:
 defaultNetwork: true // If defaultNetwork is set to true, the network is the default network.
 networkType: underlay_neutron
 subnets:
 - subnetID: ${subnet1}
 - subnetID: ${subnet2}

2. Log in to the CCI 2.0 console.
3. In the navigation pane, choose Workloads. On the Pods tab, click Create

from YAML.

4. Define the pod. The following is an example YAML file:

NO TE

The k8s.v1.cni.cncf.io/networks field is used as an example. If the yangtse.io/multi-
eip-ids field is required, see Table 2-3.

Cloud Container Instance (CCI)
Best Practices 2 Workload Management

Issue 01 (2025-08-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 23

https://console.eu.huaweicloud.com/cci2.0

kind: Pod
apiVersion: cci/v2
metadata:
 name: pod-muti-eip-test
 annotations:
 k8s.v1.cni.cncf.io/networks: '[{"name":"second-network","interface":"eth0"},{"name":"default-
network","interface":"eth1"},{"name":"default-network","interface":"eth2"},{"name":"second-
network","interface":"eth3"}]'
 resource.cci.io/instance-type: general-computing-lite
 resource.cci.io/pod-size-specs: 0.25_0.5
spec:
 containers:
 - name: init-myservice
 image: nginx:latest
 ports:
 - containerPort: 80
 protocol: TCP
 resources:
 limits:
 cpu: 250m
 memory: 512Mi
 requests:
 cpu: 250m
 memory: 512Mi
 restartPolicy: Always
 terminationGracePeriodSeconds: 30
 dnsPolicy: Default
 securityContext: {}
 imagePullSecrets:
 - name: imagepull-secret

Table 2-3 yangtse.io/multi-eip-ids and k8s.v1.cni.cncf.io/networks
description

Field V
al
u
e
Ty
pe

Format Description Example Value

yangtse
.io/
multi-
eip-ids

St
ri
ng

eip-
id1,eip-
id2,eip-
id3,eip-
id4

● EIP IDs. Use
commas (,) to
separate
multiple IDs.
Each EIP ID is
unique. The EIPs
are not bound
to any
resources.

yangtse.io/multi-eip-ids:
eip-id1,eip-id2,eip-id3,eip-
id4

Cloud Container Instance (CCI)
Best Practices 2 Workload Management

Issue 01 (2025-08-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 24

Field V
al
u
e
Ty
pe

Format Description Example Value

k8s.v1.c
ni.cncf.i
o/
networ
ks

St
ri
ng

[
{
"name":
"second-
network",
"interface
": "eth1",
"eip": {
"id": "eip-
id",
"bandwidt
h-size":
"5",
"network-
type":
"5_g-vm",
"charge-
mode":
"bandwidt
h",
"bandwidt
h-name":
"eip-
myself",
"bandwidt
h-id":
"bandwidt
h-id"
}
}
]

● name:
(optional) The
default value is
"". If this
parameter is
not specified,
the default
network is used.
The network
must be created
in advance.

● interface:
(optional)
indicates the
name of the
network
interface. The
default value is
"". If this
parameter is
not specified,
the network
interface name
is constructed
based on the
array sequence.
For example, if
the first
element in the
array is eth0,
the network
interface name
is eth0. The
network
interface names
in the pod must
be set to eth0
and eth1 in
sequence.

● eip: (optional)
indicates the
EIP associated
with the
network

k8s.v1.cni.cncf.io/networks:
[{"name":"default-
network","interface":"eth0
","eip":{"id":"eip-id"}},
{"name":"second-
network","interface":"eth1
","eip":{"bandwidth-
size":"5","network-
type":"5_g-vm","charge-
mode":"bandwidth","band
width-name":"eip-
myself"}},{"name":"third-
network","interface":"eth2
","eip":{"bandwidth-
id":"bandwidth-id"}},
{"name":"network-no-
eip","interface":"eth3"}]

Cloud Container Instance (CCI)
Best Practices 2 Workload Management

Issue 01 (2025-08-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 25

Field V
al
u
e
Ty
pe

Format Description Example Value

interface of the
pod. If this
parameter is
not specified,
no EIP needs to
be configured
for the network
interface. A
network
interface can
only be
associated with
one EIP ID.
Multiple
network
interfaces
cannot be
associated with
the same EIP ID.

● id: (optional)
indicates the ID
of an EIP that
has not been
bound to any
resource. If this
parameter is
not specified, an
existing EIP ID
is not used. If
this parameter
is specified, the
bandwidth-id,
bandwidth-
size,
bandwidth-
name,
network-type,
and charge-
mode
parameters
become invalid.

● bandwidth-id:
(optional)
indicates the ID

Cloud Container Instance (CCI)
Best Practices 2 Workload Management

Issue 01 (2025-08-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 26

Field V
al
u
e
Ty
pe

Format Description Example Value

of a shared
bandwidth. If
this parameter
is specified, EIPs
use a shared
bandwidth. If
this parameter
is not specified,
dedicated
bandwidths are
used. If this
parameter is
specified, the
bandwidth-
size,
bandwidth-
name, and
charge-mode
parameters
become invalid.

● bandwidth-
size: (optional)
indicates the
dedicated
bandwidth
range, in Mbit/s.
The default
value is 5. If this
parameter is
specified, the
specified
bandwidth
range will be
used. This
parameter is
used together
with network-
type, charge-
mode, and
bandwidth-
name. The
bandwidth
ranges vary by
region. For

Cloud Container Instance (CCI)
Best Practices 2 Workload Management

Issue 01 (2025-08-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 27

Field V
al
u
e
Ty
pe

Format Description Example Value

details, see the
EIP console.

● network-type:
(optional)
indicates a
public IP
address. The
default value is
5_bgp. If this
parameter is
specified, an EIP
will be assigned.
This parameter
is used together
with
bandwidth-
size, charge-
mode, and
bandwidth-
name. The
types vary by
region. For
details, see the
EIP console.

● charge-mode:
(optional)
indicates the
billing mode. If
this parameter
is specified, an
EIP with the
specified billing
mode will be
assigned. This
parameter is
used together
with
bandwidth-
size, network-
type, and
bandwidth-
name. The
default value
varies

Cloud Container Instance (CCI)
Best Practices 2 Workload Management

Issue 01 (2025-08-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 28

Field V
al
u
e
Ty
pe

Format Description Example Value

depending on
the region
configuration.
– bandwidth:

billed by
bandwidth

– traffic: billed
by traffic

● bandwidth-
name:
(optional)
indicates the
name of the
dedicated
bandwidth. The
default value is
randomly
generated. After
this parameter
is specified, a
dedicated
bandwidth with
the specified
name will be
assigned. This
parameter is
used together
with
bandwidth-
size, network-
type, and
charge-mode.
The following
configuration is
for your
reference:
– The value

can contain
1 to 64
characters
and must
start and end
with a digit

Cloud Container Instance (CCI)
Best Practices 2 Workload Management

Issue 01 (2025-08-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 29

Field V
al
u
e
Ty
pe

Format Description Example Value

or letter.
Only digits,
letters,
underscores
(_), hyphens
(-), and
periods (.)
are allowed.

– Minimum
characters: 1

– Maximum
characters:
64

5. Click OK.

Cloud Container Instance (CCI)
Best Practices 2 Workload Management

Issue 01 (2025-08-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 30

3 Storage Management

3.1 Adding Ephemeral Storage Capacity
This topic describes how to add ephemeral storage capacity when a large amount
of data is written or a large image is used.

Scenario
If the pod needs to write a large amount of data to rootfs or emptyDir or if the
image size is greater than 30 GiB, you need to expand the ephemeral storage
capacity.

Precautions
The maximum ephemeral storage capacity is 994 GiB.

Procedure

Step 1 Log in to the CCI console. In the navigation pane, choose Workloads. On the
Deployments tab, click Create from YAML.

Step 2 Fill in the YAML file as follows:
kind: Deployment
apiVersion: cci/v2
metadata:

Cloud Container Instance (CCI)
Best Practices 3 Storage Management

Issue 01 (2025-08-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 31

 name: nginx
spec:
 replicas: 1
 selector:
 matchLabels:
 app: nginx
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - name: nginx
 image: nginx:latest
 resources:
 limits:
 cpu: 500m
 memory: 1Gi
 requests:
 cpu: 500m
 memory: 1Gi
 dnsPolicy: Default
 extraEphemeralStorage:
 sizeInGiB: 10 # Ephemeral storage capacity to be added, in GiB

Step 3 Go to the workload details page. On the Pods tab, locate the target pod and click
View Terminal in the Operation column.

Step 4 Enter lsblk and press Enter to check the system disk size after the expansion. (The
ephemeral storage capacity is 30 GiB by default.)

----End

Cloud Container Instance (CCI)
Best Practices 3 Storage Management

Issue 01 (2025-08-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 32

4 Image Management

4.1 Using Image Snapshots to Accelerate Image Pull

Scenario
Image snapshots provide a more efficient way to start up containers. Using an
image snapshot to create a pod accelerates image pull and reduces the time
required for starting up the containers. For details about how to use image
snapshots, see Using Image Snapshots.

Procedure

Step 1 Log in to the CCI console. In the navigation pane, choose Image Snapshots. On
the displayed page, click Create from YAML. The following is an example YAML
file:
apiVersion: cci/v2
kind: ImageSnapshot
metadata:
 name: imagesnapshot-a
spec:
 buildingConfig:
 namespace: default # Namespace
 imageSnapshotSize: 20 # Image snapshot size, in GiB
 ttlDaysAfterCreated: 100 # Image validity period
 images:
 - image: nginx:stable-alpine-perl # Image
 registries: []

Step 2 In the navigation pane, choose Workloads. On the Deployments tab, click Create
from YAML to create a workload. Add cci.io/image-snapshot-auto-match: 'true'
in annotations. The following is an example:
kind: Deployment
apiVersion: cci/v2
metadata:
 name: nginx
spec:
 replicas: 1
 selector:
 matchLabels:
 app: nginx
 template:

Cloud Container Instance (CCI)
Best Practices 4 Image Management

Issue 01 (2025-08-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 33

https://support.huaweicloud.com/eu/usermanual-cci2/cci_01_0114.html

 metadata:
 labels:
 app: nginx
 annotations:
 cci.io/image-snapshot-auto-match: 'true' # Automatic matching of image snapshots
 spec:
 containers:
 - name: nginx
 image: nginx:stable-alpine-perl
 resources:
 requests:
 cpu: 500m
 memory: 1Gi

Step 3 Verify that the pod annotations contain the cci.io/image-snapshot-detail and
cci.io/imagesnapshot-volume fields, the matched image snapshot is displayed,
and the size of the mounted data disk is the same as that of the image snapshot.

----End

4.2 Using a Third-Party Image to Create a Pod
This topic describes how to create a pod using an image pulled from a third-party
repository.

Scenario
An image in a third-party repository is required.

Constraints
An EIP must be configured for Harbor first.

Procedure

Step 1 Log in to the CCI console. In the navigation pane, choose Workloads. On the
Deployments tab, click Create from YAML.

Step 2 Fill in the YAML file as follows:
kind: Deployment
apiVersion: cci/v2
metadata:
 name: nginx
spec:

Cloud Container Instance (CCI)
Best Practices 4 Image Management

Issue 01 (2025-08-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 34

 replicas: 1
 selector:
 matchLabels:
 app: nginx
 template:
 metadata:
 labels:
 app: nginx
 annotations:
 cci.io/insecure-registries: 100.85.XXX.XXX # EIP bound to Harbor. This IP address is used to pull images
from the self-managed image repository.
 yangtse.io/pod-with-eip: 'true' # Controls whether the pod can access the EIP.
 spec:
 containers:
 - name: nginx
 image: 100.85.XXX.XXX/library/nginx:stable-alpine-perl # Image address in Harbor
 resources:
 requests:
 cpu: 500m
 memory: 1Gi

Step 3 Verify that the workload is in the Running state.

----End

Cloud Container Instance (CCI)
Best Practices 4 Image Management

Issue 01 (2025-08-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 35

5 Log Monitoring

5.1 Reporting Logs to LTS

Scenario
Log Tank Service (LTS) analyzes and processes massive amounts of log data to
maximize the availability and performance of cloud services and applications. CCI
reports logs of containers in each pod to LTS.

Step 1 Log in to the LTS console and create a log group.

Step 2 Create a log stream in the created log group.

Cloud Container Instance (CCI)
Best Practices 5 Log Monitoring

Issue 01 (2025-08-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 36

Step 3 Log in to the CCI console. In the navigation pane, choose Workloads. On the
Deployments tab, click Create from YAML.

Step 4 Edit the YAML file.
apiVersion: cci/v2
kind: Deployment
metadata:
 name: test
spec:

Cloud Container Instance (CCI)
Best Practices 5 Log Monitoring

Issue 01 (2025-08-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 37

 replicas: 1
 selector:
 matchLabels:
 app: test
 template:
 metadata:
 annotations:
 logconf.k8s.io/fluent-bit-log-type: lts # Where logs are reported
 logconfigs.logging.openvessel.io: "{\"default-config\":{\"container_files\":{\"container-0\":\"stdout.log;/
root/out.log;/data/emptydir-volume/*.log\"},\"regulation\":\"/(?<log>\\\\d+-\\\\d+-\\\\d+ \\\\d+:\\\\d+:\\\\d
+.*)/\",\"lts-log-info\":{\"349b50f7-f6ba-4768-86f9-e7f84ab677c0\":\"8a9e0589-c3b5-4ed1-
b8cd-1e8a54612d0e\"}}}" # Log reporting configuration
 labels:
 app: test
 spec:
 containers:
 - image: centos:latest
 command: ['sh', '-c', "while true; do echo hello; touch /root/out.log; echo hello >> /root/out.log; touch /
data/emptydir-volume/emptydir.log; echo hello >> /data/emptydir-volume/emptydir.log; sleep 10; done"]
Command used to simulate log writing
 volumeMounts:
 - name: emptydir-volume
 mountPath: /data/emptydir-volume
 - name: emptydir-memory-volume
 mountPath: /data/emptydir-memory-volume
 name: container-0
 resources:
 limits:
 cpu: 100m
 memory: 100Mi
 requests:
 cpu: 100m
 memory: 100Mi
 volumes:
 - name: emptydir-volume
 emptyDir: {}
 - name: emptydir-memory-volume
 emptyDir:
 sizeLimit: 1Gi
 medium: Memory
 strategy:
 type: RollingUpdate
 rollingUpdate:
 maxSurge: 1
 maxUnavailable: 0

In annotations, logconfigs.logging.openvessel.io specifies configuration items
for log reporting, and the configuration items are in JSON format. The following
describes each configuration item:

{
 "default-config": { // Configuration name. You can change it as needed.
 "container_files": { // You can set the log collection paths of multiple containers. stdout.log indicates
standard output. /root/out.log indicates the text logs in rootfs (volumes included). /data/emptydir-xxx/
*.log indicates the directories in rootfs (volumes included).
 "container-0": "stdout.log;/root/out.log;/data/emptydir-volume/*.log",
 ...
 },
 "regulation": "/(?<log>\\d+-\\d+-\\d+ \\d+:\\d+:\\d+.*)/", // Regular expression matching rule for
collecting multi-line logs
 "lts-log-info": { // Only one log group and one log stream are allowed.
 "f938a11a-678e-4631-80a0-3667be1280f7": "a248c18b-61ed-4de2-8f7f-c042b78bb0fd" // Log
group ID and log stream ID in the format of {log-group-ID}:{log-stream-ID}
 }
 },
 "other-config": { // Other settings
 ...
 }
}

Cloud Container Instance (CCI)
Best Practices 5 Log Monitoring

Issue 01 (2025-08-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 38

Step 5 Wait until the workload enters the running state and click View Log in the
Operation column to view the logs reported by the pod.

----End

Cloud Container Instance (CCI)
Best Practices 5 Log Monitoring

Issue 01 (2025-08-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 39

	Contents
	1 Workload Creation
	1.1 Deploying WordPress Using the CCI Console
	1.2 Configuring Dockerfile Parameters for CCI

	2 Workload Management
	2.1 Performing Graceful Rolling Upgrades for CCI Applications
	2.2 Exposing Basic Pod Information to Containers Through Environment Variables
	2.3 Configuring Kernel Parameters
	2.4 Resizing /dev/shm
	2.5 Configuring Transparent Huge Pages
	2.6 Configuring Multiple Network Interfaces and EIPs for a Pod

	3 Storage Management
	3.1 Adding Ephemeral Storage Capacity

	4 Image Management
	4.1 Using Image Snapshots to Accelerate Image Pull
	4.2 Using a Third-Party Image to Create a Pod

	5 Log Monitoring
	5.1 Reporting Logs to LTS

